

## 無線LANのセキュリティ ~最新事情と導入の基本方針~

(株)ファム セミナー事務局

http://www.famm.jp

根津 研介

#### nez@samba.gr.jp

## 802.11bセキュリティの「現在」

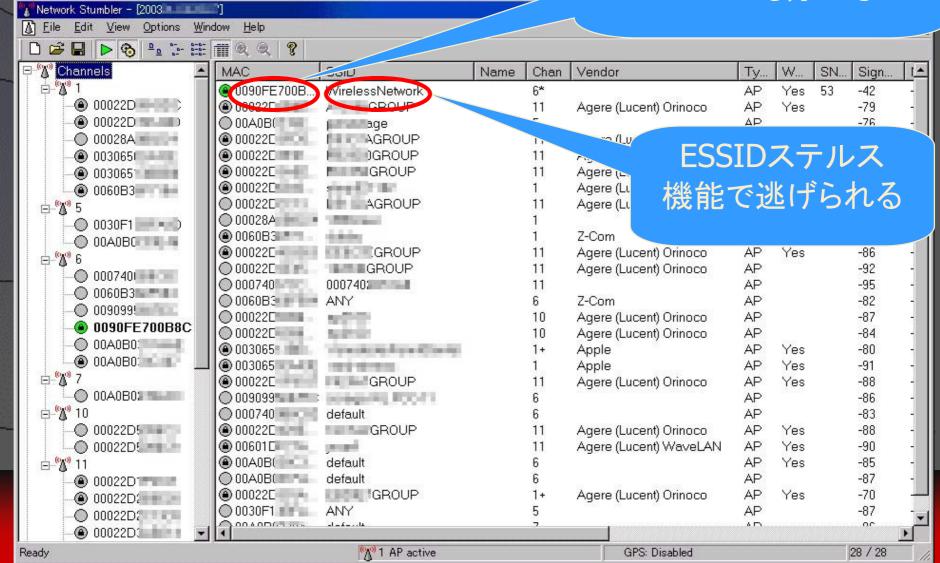
- コンシューマーモデルの機能
  - MACアドレスフィルタリング
  - WEP(40bit, 104bit)による暗与化
  - ESSIDステルス機能~
  - ESSID=Any拒否機能-
  - (モノによるけれど)ログ機能
- ・コーポレートモデルの機能
  - コンシューマーモデル機能は当然あって、さらに、
  - -802.1xによる認証と鍵交換の機能

1秒間に10回APが だすビーコンに ESSIDを載せない

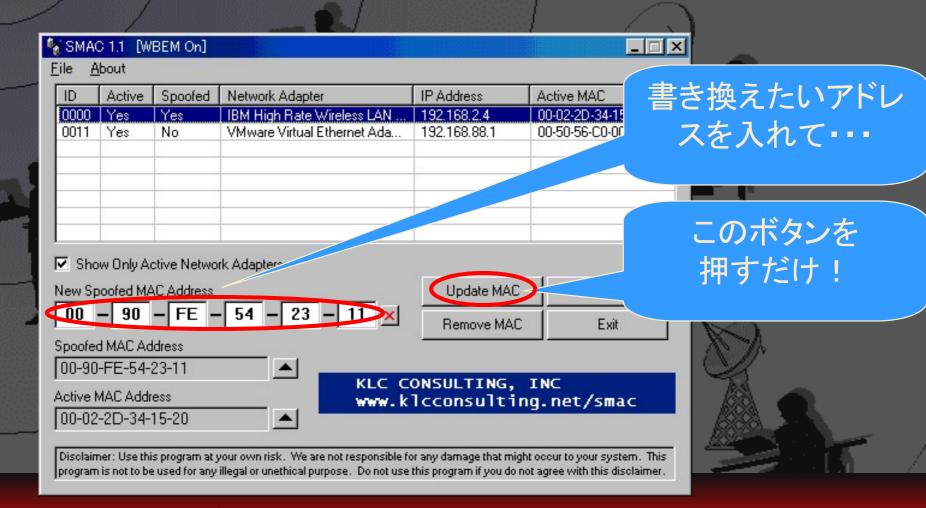
ESSID=Anyのプロ ブリクエストに ESSIDを返さない

ESSID=Any設定の クライアントからの 接続を拒否

## で、実際のとこ、どうなのよ?


緊急をよってもとう

- MACアドレス制限は解除可能
  - 利用許可マシンのMACアドレスは仕様上クリアテキストで入手可能
  - LinuxなどのLANドライバではMACアドレスの書き換えが可能
  - Windows2000/XPでもユーティリティ/レジストリ書換で可能
- WEPは解読ツールがフリーソフトウェアで公開されている
  - 統計処理による受動的解読や、ブルートフォース用ツール
- MITM(Man In The Middle)攻撃やリプレイ攻撃も可能
  - パケットに署名やシーケンス番号がない・・・
- ESSIDステルス機能は「クライアントの通信パケットを捕まえればバレバレ」
- 802.1xは「相互接続性に問題山積み」
- しかも、工場出荷値では「ぜんぶオフ」!


2003/03/22 NT-Committee2

## ドライビングツール (Windows) NetworkStumbler

APのMACアドレスから メーカーも分かる



## MACアドレス変更ソフト(Windows) タセキュリティ研究会 **SMAC**



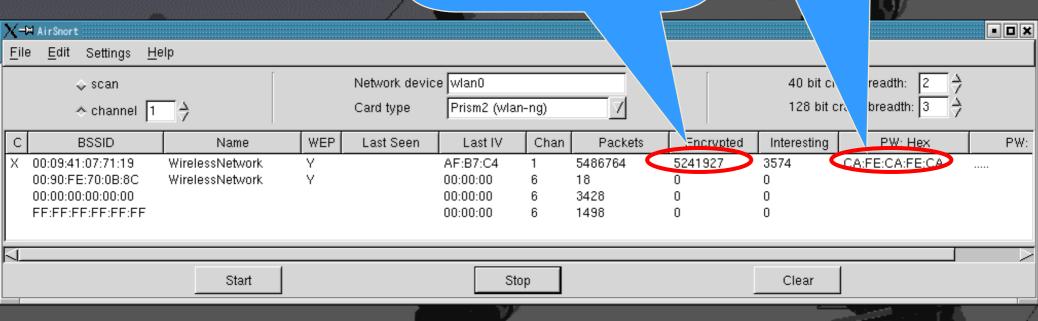
## 無線LANキャプチャ(Linux) Ethereal

| <u>File Edit Capture Display Tools He</u> |           |                   |                     |             |                |                                                   |                                |
|-------------------------------------------|-----------|-------------------|---------------------|-------------|----------------|---------------------------------------------------|--------------------------------|
| No. 🗸                                     | Time      | Source            | Destination         | Protocol    | Info           |                                                   | ξ.                             |
| 153                                       | 14,641749 | ELECOM_70:0b:8c   | Broadcast           | IEEE 802,11 | Beacon frame   | _                                                 |                                |
| 154                                       | 14,744399 | ELECOM_70:0b:8c   | Broadcast           | IEEE 802,11 | Beacon frame   |                                                   |                                |
| 155                                       | 14.846510 | ELECOM_70:0b:8c   | Broadcast           | IEEE 802,11 | Beacon frame   |                                                   |                                |
| 156                                       | 14,876999 | Agene_34:15:20    | SUMITOMO_26;02;a2   | IEEE 802,11 | Data           |                                                   |                                |
| 157                                       | 14,877209 |                   | Agere_34:15:20 (RA) | IEEE 802,11 | Acknowledger   |                                                   |                                |
| 158                                       | 14,949151 | ELECOM_70:0b:8c   | Broadcast           | IEEE 802,11 | D-             | FSSID                                             | ステルス機能                         |
| 159                                       | 15,051378 | ELECOM_70:0b:8c   | Broadcast           | IEEE 802,11 | Beaco.         |                                                   |                                |
| 160                                       | 15,153735 | ELECOM_70:0b:8c   | Broadcast           | IEEE 802,11 | Beacon fr.     | を使っ.                                              | ても端末側の                         |
| 161                                       | 15,256268 | ELECOM_70:0b:8c   | Broadcast           | IEEE 802,11 | Beacon fra     |                                                   |                                |
| 162                                       | 15,358790 | ELECOM_70:0b:8c   | Broadcast           | IEEE 802,11 | Beacon fra     | フレー.                                              | ムにはESSID                       |
| 163                                       | 15,461144 | ELECOM_70:0b:8c   | Broadcast           | IEEE 802,11 | Beacon fra     |                                                   |                                |
| 164                                       | 15,563112 | ELECOM_70:0b:8c   | Broadcast           | IEEE 802,11 | Beacon fra     | 力 に                                               | 載っている                          |
| 165                                       | 15,622735 | 00:00:00_00:00:00 | 00:00:00_00:00:00   | IEEE 802,11 | Association No | ,                                                 | <b>X</b> = <b>C</b> = <b>G</b> |
| 166                                       | 15,665476 | ELECOM_70:0b:8c   | Broadcast           |             | Beacon frame   |                                                   |                                |
| 167                                       | 15,767917 | ELECOM_70:0b:8c   | Broadcast           | IEEE 802,11 | Beacon frame   |                                                   |                                |
| 168                                       | 15,870331 | ELECOM_70:0b:8c   | Broadcast           | IEEE 802,11 | Beacon frame   | \ <del>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</del> | 11                             |
| 169                                       | 15,972770 | ELECOM_70:0b:8c   | Broadcast           | IEEE 802,11 | Beacon frame   | 通信                                                | を許可された                         |
| <del>ローロー クー</del> イー                     |           |                   |                     |             |                |                                                   | アントのMAC                        |
| Duration: 258                             |           |                   |                     |             |                |                                                   |                                |

BSS Id: 00:90:fe:70:0b:8c (ELECOM\_70:0b:8c)

Source address: 00:02:2d:34:15:20 (Agere 34:15:20)

Destination address: 00:00:5f:26:02:a2 (SUMITUMU\_26:02:a2)


Fragment number: 0 Sequence number: 1133

⊞ WEP parameters Data (108 bytes)

アドレスもばればれ

## WEP解析ソフトウェア(Linux) AirSnort

どれだけのパケット が必要かは何とも いえない WEPの脆弱性で事 前共有鍵はばれる



WPA (Wi-Fi Protected Access) (\$\frac{1}{2003/03/22 NT-Com

救世主になりうるか?

- AirSnort等の解析よけにはなる
- WPA for Home/SOHOではTKIP採用
  - 事前共有鍵の管理が必要なのは802.11bと一緒
  - 企業で導入する場合、鍵の管理がタイヘン
- WPA for EnterpriseではEAP+802.1x+RADIUS採用
  - 複雑な相互接続性の問題はそのまま残る・・・
  - CA局による証明書の管理、またはサポートする認証方式 (PEAP、LEAP、MD5等)の選択の問題 → 管理がタイヘン
  - CA局、RADIUSサーバの構築運用のコストもかかる
- ・しかも、工場出荷値では「ぜんぶオフ」なのは一緒!

All rights Reserved.

## 802.11a,802.11g,802.11i/t---?

- 802.11a製品は相互接続性認証(Wi-Fi Certified)が 始まったばかり
- 802.11g製品は見切り発車で相互接続性認証 (Wi-Fi Certified)は計画段階
- 802.11a/gはセキュリティ的には802.11bレベル
- 802.11i製品がでてくるのは2003年末~2004年?



## じゃあ、どうすればいい?

SIerが相互接続確認したものだけで 揃える

- 現段階では、どこかに見切りが必要
- 1メーカー製品で上から下まで揃えられるか?
  - 無線LAN内蔵ノートPC等が無視される場合も・・・
  - WindowsXPのみ対応の場合も・・・
- 802.11bでできる限りのセキュリティを施す?
  - 無線LANは小型のインターネットのようなもの、有線LAN はセキュリティポリシーのレベルが異なる
  - 異なるレベルのものを接続させるポイントは、インターネッのDMZと一緒=ゲートウェイによる分離
- ●「無線LANは使わない」という選択肢もある

# 802.11bでできる限りのセキュリティを施す(1)

- ナーバスな情報(顧客情報等)を無線LANに流さない
- 無線LANはアクセスポイントもクライアントもミニ放送 局だという意識を持つ
- 扱っている情報を類推されるので、意味のある(企業 名等)ESSIDをつけない
- WEPは128ビットで16進数で指定する
- WEPキーは期間ごとに更新する←これがタイペン
- WPA対応を表明しているメーカー製品を採用する

## 802.11bでできる限りの セキュリティを施す(2)-1

### ~理想編~

• セキュリティポリシーの異なるもの同士の接続

外向き

──内向き

ファイアーウォール 有線LANエリア



Private CA局

**RADIUS** 

802.1x対応

AP



- ●ユーサ 認証
- •TKIPキー配布

無線LANエリア



## 802.11bでできる限りの セキュリティを施す(2)-2

- ~理想編~

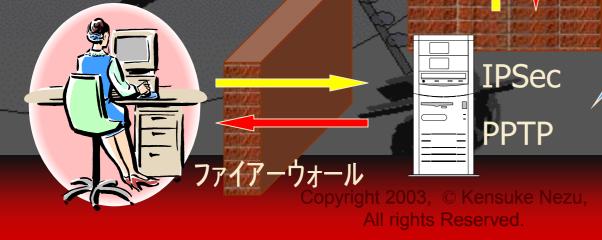
- RADIUSサーバー+802. 1x
- ・メリット
  - WEP鍵の管理が不必要
  - 通信の初期段階からユーザ認証可能
- ・デメリット
  - 相互接続性の問題がある
  - 認証方式にEAP-TLSを利用した場合、別途CA局が必要
    - ※CA局をプライベートに立ちあげサーバー/クライアントに配布する管理が別途必要になる
    - ※EAP-TTLS,LEAP,PEAP等は相互接続性にまだ問題が・・・
  - RADIUSサーバーの管理も必要

## 802.11bでできる限りの セキュリティを施す(2)-3

#### ~理想編~

- 実現方法1: 相互接続性が保証されているメーカー 製品での統一
  - 手間はかからないが<mark>金銭的な負担や、サポートできない端</mark> 末も・・・
- 実現方法2: フリーのFreeRADIUS + HostAPドライ バによるアクセスポイントの構築(マニア向け?)
  - どちらもLinux/\*BSD上でCVS版を使う必要がある。
  - 情報は英語ページがほとんど
  - オウンリスクでの利用が必要
  - サプリカント(端末ソフト)は、無償ダウンロードできるものや WindowsXPの機能を利用する

## 802.11bでできる限りの セキュリティを施す(3)-1~現実編1~


・セキュリティポリシーの異なるもの同士の接続

ファイアーウォール

ンターネット 外向き

一内向き

有線LANエリア



#### 現実1

- ●ユーサ 認証
- ●通信の暗号化

無線LANエリア



ファイアーウォール

## 802.11bでできる限りの セキュリティを施す(3)-2~現実編1~

- IPSecまたはPPTPによる接続
- ・メリット
  - 現時点では相互接続性が比較的ある
  - IPSecの暗号化は現在のところ安心(PPTPは・・・・・・・
- ・デメリット
  - WEP鍵の管理が必要(でもそう頻繁に変更しなくてもよい?)
  - 通信の初期段階で必ずしも暗号化通信が行われるわけでは ない
  - IPSecは初期設定のノウハウが充実していない
  - クライアントの防御が別途必要になる

## 802.11bでできる限りの セキュリティを施す(4)-1~現実編2~

・セキュリティポリシーの異なるもの同士の接続

外向き

一内向き

有線LANエリア



ンターネット ブロート・バント



#### 現実2

- ●ユーサ 認証
- •プロキシ経由の接続

無線LANエリア



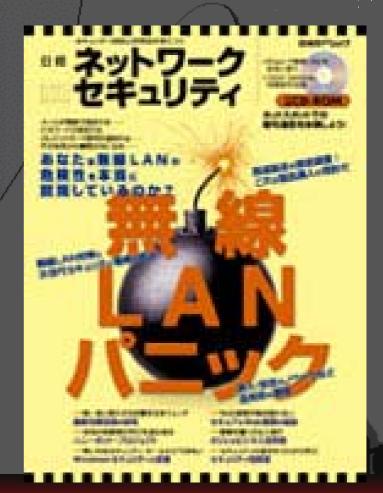
## 802.11bでできる限りの セキュリティを施す(4)-2~現実編2~

- Webプロキシー/Socksプロキシー等の利用
- ・メリット
  - 一比較的簡単、手軽に実現可能
- ー 有線LAN、インターネットからは隔離できる
  - コンシューマー機器で構築可能(ホームユーザでも実現可)
- ・デメリット
  - WEP鍵の管理(定期的な手動変更)が必要
  - 通信の内容は守れない可能性がある(ID/パスワードも・・・) ※無線LANから有線LANには怖くて入れられない
  - クライアントの防御が別途必要になる

## 使わないという選択肢

- 前述のような管理や構築が不可能/できないという場合は、使わないという選択肢もある
- あと1年くらいすると、802.11iや802.11gも構築や相互接続の ノウハウができている可能性もあるのでそれまで待つのも手
- 使わない場合も、定期的にNetStumblerなどを利用して勝手 — に設置されたアクセスポイントがないか監視する必要がある
  - コンシューマー製品は手軽に買えてしまう
  - 有線LANから見たときに判別できないケースもある
  - ただし、社外のアクセスポイントである可能性も考慮すること
- セキュリティポリシを設定して、「設置許可願い」を作っておくことで、潜在的な「設置予定者」を炙り出す手もある

## まとめ


- 現状では、利用用途と管理コストを考慮した運用が必要
- 基本的に脆弱であることを認識することが必要
  - ユーザにも周知が必要
  - えらい人にも周知が必要
- 過渡期の製品なので製品寿命をあまり長く見てはいけない
  - 無理に高価なものを導入するのは考えもの
- 最悪でも、社内の「機密情報」や「顧客情報」にアクセスする手段は 排除しておくことが必要
- コンシューマー製品は、「企業向け」ではないことをえらい人に周知 することが必要
  - 「こんなに安く売っているものを何故使わないんだ!」が成り立たないことを場合 によっては実証する必要がある

*緊急コンピュータセキュロテン*エエ

## 参考文献(1)

いちおし!

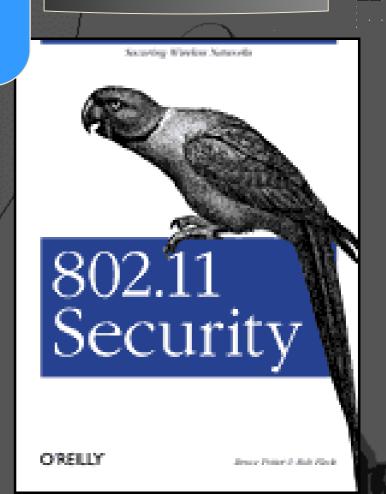
- 日経ネットワークセキュリティ 〜無線LANハ゜ニック〜
  - 法律的な面や関係省庁の見解、 - 弁護士の見解もある
    - WPAに対する各メーカーの アップグレード方針もわかる
    - 無線LANに関する最強の1冊
    - 流通業界での顧客情報漏洩事 例も紹介されている



## 参考文献(2)

おすすめ!

- N+I NETWORKガイド 2003/03号
  - SIerからみた無線LANの解 説記事がある
  - RADIUSの仕組みと構築の ポイントに関する記事がよ い




緊急コンピュータセキュリティエア

## 参考文献(3)

待ちきれない 人、英語に自 信のある人は 頑張って英語 版を読もう!

- 802.11 Security
  - O'Reilly本
  - FreeBSD/NetBSD/Linux/MacOS Xのクライアント設定例がある
  - ー hostAPドライバ(\*BSD/Linuxを \_\_\_\_アクセスポイントにするドライバ)の \_\_\_解説がある
  - ゲートウェイの構築についての ヒントも・・・
  - トータルな無線LANセキュリティの 解説本としてオススメ



日本語版を待て!

## 参考URL

- Host AP driver for Intersil Prism2/2.5/3
   http://hostap.epitest.fi/
- FreeRADIUS -- building the perfect RADIUS server -http://www.freeradius.org/
- WPAに関する一次情報
   http://www.wi-fi.org/OpenSection/secure.asp#resources
- 無線LAN ML"ドット・イレブン"http://www.freeml.com/info/dot-eleven